Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Lasers Med Sci ; 39(1): 56, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329547

RESUMO

Photobiomodulation (PBM) induced by non-ionizing radiations emitted from low-power lasers and light-emitting diodes (LEDs) has been used for various therapeutic purposes due to its molecular, cellular, and systemic effects. At the molecular level, experimental data have suggested that PBM modulates base excision repair (BER), which is responsible for restoring DNA damage. There is a relationship between the misfunction of the BER DNA repair pathway and the development of tumors, including breast cancer. However, the effects of PBM on cancer cells have been controversial. Breast cancer (BC) is the main public health problem in the world and is the most diagnosed type of cancer among women worldwide. Therefore, the evaluation of new strategies, such as PBM, could increase knowledge about BC and improve therapies against BC. Thus, this work aims to evaluate the effects of low-power red laser (658 nm) and blue LED (470 nm) on the mRNA levels from BER genes in human breast cancer cells. MCF-7 and MDA-MB-231 cells were irradiated with a low-power red laser (69 J cm-2, 0.77 W cm-2) and blue LED (482 J cm-2, 5.35 W cm-2), alone or in combination, and the relative mRNA levels of the APTX, PolB, and PCNA genes were assessed by reverse transcription-quantitative polymerase chain reaction. The results suggested that exposure to low-power red laser and blue LED decreased the mRNA levels from APTX, PolB, and PCNA genes in human breast cancer cells. Our research shows that photobiomodulation induced by low-power red laser and blue LED decreases the mRNA levels of repair genes from the base excision repair pathway in MCF-7 and MDA-MB-231 cells.


Assuntos
Neoplasias da Mama , Terapia com Luz de Baixa Intensidade , Humanos , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Lasers , Reparo do DNA/genética , Terapia com Luz de Baixa Intensidade/métodos
3.
Mol Biol Rep ; 51(1): 47, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165468

RESUMO

APE1/REF-1 (apurinic/apyrimidinic endonuclease 1 / redox factor-1) is a protein with two domains, with endonuclease function and redox activity. Its main activity described is acting in DNA repair by base excision repair (BER) pathway, which restores DNA damage caused by oxidation, alkylation, and single-strand breaks. In contrast, the APE1 redox domain is responsible for regulating transcription factors, such as AP-1 (activating protein-1), NF-κB (Nuclear Factor kappa B), HIF-1α (Hypoxia-inducible factor 1-alpha), and STAT3 (Signal Transducers and Activators of Transcription 3). These factors are involved in physiological cellular processes, such as cell growth, inflammation, and angiogenesis, as well as in cancer. In human malignant tumors, APE1 overexpression is associated with lung, colon, ovaries, prostate, and breast cancer progression, more aggressive tumor phenotypes, and worse prognosis. In this review, we explore APE1 and its domain's role in cancer development processes, highlighting the role of APE1 in the hallmarks of cancer. We reviewed original articles and reviews from Pubmed related to APE1 and cancer and found that both domains of APE1/REF-1, but mainly its redox activity, are essential to cancer cells. This protein is often overexpressed in cancer, and its expression and activity are correlated to processes such as proliferation, invasion, inflammation, angiogenesis, and resistance to cell death. Therefore, APE1 participates in essential processes of cancer development. Then, the activity of APE1/REF-1 in these hallmarks suggests that targeting this protein could be a good therapeutic approach.


Assuntos
Neoplasias , Humanos , Masculino , Neoplasias/genética , Ciclo Celular , Morte Celular , Endonucleases , Inflamação
4.
Lasers Med Sci ; 38(1): 253, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930459

RESUMO

Studies have demonstrated bacterial inactivation by radiations at wavelengths between 400 and 500 nm emitted by low-power light sources. The phototoxic activity of these radiations could occur by oxidative damage in DNA and membrane proteins/lipids. However, some cellular mechanisms can reverse these damages in DNA, allowing the maintenance of genetic stability. Photoreactivation is among such mechanisms able to repair DNA damages induced by ultraviolet radiation, ranging from ultraviolet A to blue radiations. In this review, studies on the effects of violet and blue lights emitted by low-power LEDs on bacteria were accessed by PubMed, and discussed the repair of ultraviolet-induced DNA damage by photoreactivation mechanisms. Data from such studies suggested bacterial inactivation after exposure to violet (405 nm) and blue (425-460 nm) radiations emitted from LEDs. However, other studies showed bacterial photoreactivation induced by radiations at 348-440 nm. This process occurs by photolyase enzymes, which absorb photons at wavelengths and repair DNA damage. Although authors have reported bacterial inactivation after exposure to violet and blue radiations emitted from LEDs, pre-exposure to such radiations at low fluences could activate the photolyases, increasing resistance to DNA damage induced by ultraviolet radiation.


Assuntos
Desoxirribodipirimidina Fotoliase , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Luz , Fótons , DNA
5.
Lasers Med Sci ; 38(1): 191, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37610503

RESUMO

Among the malignant tumors, breast cancer is the most commonly diagnosed worldwide, being the most prevalent in women. Photobiomodulation has been used for wound healing, swelling and pain reduction, and muscle repair. The application of photobiomodulation in cancer patients has been controversial. Therefore, a better understanding of radiation-induced effects involved in photobiomodulation on cancer cells is needed. Thus, this study aimed to investigate the effects of exposure to low-power lasers and LEDs on cell viability, migration, and invasion in human breast cancer cells. MCF-7 and MDA-MB-231 cells were irradiated with a low-power red laser (23, 46, and 69 J/cm2, 0.77 W/cm2) and blue LED (160, 321, and 482 J/cm2, 5.35 W/cm2), alone or in combination. Cell viability was assessed using the WST-1 assay, cell migration was evaluated using the wound healing assay, and cell invasion was performed using the Matrigel transwell assay. Viability and migration were not altered in MCF-7 and MDA-MB-231 cultures after exposure to low-power red laser and blue LED. However, there was a decrease in cell invasion from the cultures of the two cell lines evaluated. The results suggest that photobiomodulation induced by low-power red laser and blue LED does not alter cell viability and migration but decreases cell invasion in human breast cancer cells.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/radioterapia , Linhagem Celular , Movimento Celular , Sobrevivência Celular , Lasers
6.
Cancer Drug Resist ; 6(2): 273-283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457136

RESUMO

Colorectal cancer (CRC) is the third most diagnosed cancer and the second most deadly type of cancer worldwide. In late diagnosis, CRC can resist therapy regimens in which cancer stem cells (CSCs) are intimately related. CSCs are a subpopulation of tumor cells responsible for tumor initiation and maintenance, metastasis, and resistance to conventional treatments. In this scenario, colorectal cancer stem cells (CCSCs) are considered an important key for therapeutic failure and resistance. In its turn, mitochondria is an organelle involved in many mechanisms in cancer, including chemoresistance of cytotoxic drugs due to alterations in mitochondrial metabolism, apoptosis, dynamics, and mitophagy. Therefore, it is crucial to understand the mitochondrial role in CCSCs regarding CRC drug resistance. It has been shown that enhanced anti-apoptotic protein expression, mitophagy rate, and addiction to oxidative phosphorylation are the major strategies developed by CCSCs to avoid drug insults. Thus, new mitochondria-targeted drug approaches must be explored to mitigate CRC chemoresistance via the ablation of CCSCs.

7.
Lasers Med Sci ; 38(1): 136, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37310556

RESUMO

Since the reporting of Endre Mester's results, researchers have investigated the biological effects induced by non-ionizing radiation emitted from low-power lasers. Recently, owing to the use of light-emitting diodes (LEDs), the term photobiomodulation (PBM) has been used. However, the molecular, cellular, and systemic effects involved in PBM are still under investigation, and a better understanding of these effects could improve clinical safety and efficacy. Our aim was to review the molecular, cellular, and systemic effects involved in PBM to elucidate the levels of biological complexity. PBM occurs as a consequence of photon-photoacceptor interactions, which lead to the production of trigger molecules capable of inducing signaling, effector molecules, and transcription factors, which feature it at the molecular level. These molecules and factors are responsible for cellular effects, such as cell proliferation, migration, differentiation, and apoptosis, which feature PBM at the cellular level. Finally, molecular and cellular effects are responsible for systemic effects, such as modulation of the inflammatory process, promotion of tissue repair and wound healing, reduction of edema and pain, and improvement of muscle performance, which features PBM at the systemic level.


Assuntos
Apoptose , Transdução de Sinais , Diferenciação Celular , Proliferação de Células , Músculos
8.
Arch Med Res ; 54(2): 79-85, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36609033

RESUMO

BACKGROUND: In breast cancer (BC), hypoxia is associated with poor prognosis. Protein Salvador homolog 1 (SAV1) acts as a tumor suppressor and is downregulated in the cancer cells. However, there is limited data on the expression profile of SAV1 and its importance in BC. It has not been studied to evaluate this phenomenon in a hypoxic microenvironment yet. AIM: This study aimed to investigate SAV1 expression profiles under normoxia and hypoxia, and the potential of SAV1 in BC prognosis. METHODS: Gene and protein expression analyses were performed using Real-Time quantitative PCR (RT-qPCR) and immunocytochemistry (ICC), respectively, and in silico analyses were performed using The Cancer Genome Atlas (TCGA). The survival curves were constructed using KMplotter. RESULTS: SAV1 expression was lower in BC samples and tumor cell lines than in normal samples. The SAV1 mRNA levels were reduced in hypoxic estrogen receptor positive (ER+) tumors, which were associated with a lower survival probability as compared to normoxic ER+ tumors. Furthermore, lower levels of SAV1 were found in advanced cancer stage samples, which are associated with worse survival curves and can be a risk factor for BC. CONCLUSIONS: These data suggest a potential prognostic role of SAV1 in BC, with lower expressions associated with worse prognosis.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Prognóstico , Hipóxia , Estadiamento de Neoplasias , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Proteínas de Ciclo Celular/metabolismo
9.
Curr Top Med Chem ; 22(20): 1654-1673, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35927918

RESUMO

Breast cancer represents a health concern worldwide for being the leading cause of cancer- related women's death. The main challenge for breast cancer treatment involves its heterogeneous nature with distinct clinical outcomes. It is clinically categorized into five subtypes: luminal A; luminal B, HER2-positive, luminal-HER, and triple-negative. Despite the significant advances in the past decades, critical issues involving the development of efficient target-specific therapies and overcoming treatment resistance still need to be better addressed. OMICs-based strategies have marked a revolution in cancer biology comprehension in the past two decades. It is a consensus that Next-Generation Sequencing (NGS) is the primary source of this revolution and the development of relevant consortia translating pharmacogenomics into clinical practice. Still, new approaches, such as CRISPR editing and epigenomic sequencing are essential for target and biomarker discoveries. Here, we discuss genomics and epigenomics techniques, how they have been applied in clinical management and to improve therapeutic strategies in breast cancer, as well as the pharmacogenomics translation into the current and upcoming clinical routine.


Assuntos
Neoplasias da Mama , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Farmacogenética , Receptor ErbB-2
10.
Photochem Photobiol Sci ; 21(7): 1299-1308, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35426610

RESUMO

The aim of this study was to evaluate photobiomodulation effects on mRNA relative levels from genes of base excision repair and genomic stabilization in heart tissue from an experimental model of acute lung injury by sepsis. For experimental procedure, animals were randomly assigned to six main groups: (1) control group was animals treated with intraperitoneal saline solution; (2) LASER-10 was animals treated with intraperitoneal saline solution and exposed to an infrared laser at 10 J cm-2; (3) LASER-20 was animals treated with intraperitoneal saline solution and exposed to an infrared laser at 20 J cm-2; (4) acute lung injury (ALI) was animals treated with intraperitoneal LPS (10 mg kg-1); (5) ALI-LASER10 was animals treated with intraperitoneal LPS (10 mg kg-1) and, after 4 h, exposed to an infrared laser at 10 J cm-2 and (6) ALI-LASER20 was animals treated with intraperitoneal LPS (10 mg kg-1) and, after 4 h, exposed to an infrared laser at 20 J cm-2. Irradiation was performed only once and animal euthanasias for analysis of mRNA relative levels by RT-qPCR. Our results showed that there was a reduction of mRNA relative levels from ATM gene and an increase of mRNA relative levels from P53 gene in the heart of animals with ALI when compared to the control group. In addition, there was an increase of mRNA relative levels from OGG1 and APE1 gene in hearts from animals with ALI when compared to the control group. After irradiation, an increase of mRNA relative levels from ATM and OGG1 gene was observed at 20 J cm-2. In conclusion, low-power laser modulates the mRNA relative levels from genes of base excision repair and genomic stabilization in the experimental model of acute lung injury evaluated.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Lesão Pulmonar Aguda/genética , Animais , Reparo do DNA , Genômica , Lasers , Lipopolissacarídeos/farmacologia , Pulmão/efeitos da radiação , Modelos Teóricos , RNA Mensageiro/genética , Solução Salina
11.
Photodiagnosis Photodyn Ther ; 38: 102831, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35341978

RESUMO

Burns are among the most debilitating and devastating forms of trauma. Such injuries are influenced by infections, causing increased morbidity, mortality, and healthcare costs. Due to the emergence of multidrug-resistant infectious agents, efficient treatment of infections in burns is a challenging issue. Antimicrobial photodynamic therapy (aPDT) is a promising approach to inactivate infectious agents, including multidrug-resistant. In this review, studies on PubMed were gathered, aiming to summarize the achievements regarding the applications of antimicrobial photodynamic therapy for the treatment of infected burns. A literature search was carried out for aPDT published reports assessment on bacterial, fungal, and viral infections in burns. The collected data suggest that aPDT could be a promising new approach against multidrug-resistant infectious agents. However, despite important results being obtained against bacteria, experimental and clinical studies are necessary yet on the effectiveness of aPDT against fungal and viral infections in burns, which could reduce morbidity and mortality of burned patients, mainly those infected by multidrug-resistant strains.


Assuntos
Anti-Infecciosos , Queimaduras , Fotoquimioterapia , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Queimaduras/tratamento farmacológico , Queimaduras/microbiologia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico
12.
Lasers Med Sci ; 37(5): 2353-2362, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35288806

RESUMO

Gene expression evaluation in cells and biological tissues has been crucial for research in biology, medicine, biotechnology, and diagnostic. Messenger ribonucleic acid (mRNA) levels show relationship with gene expression, and they can be measured by real-time quantitative polymerase chain reaction (RT-qPCR) for the quantification of steady-state mRNA levels in cells and biological tissues. Radiations emitted from low-power lasers induce photobiomodulation, which is the base of therapeutic protocols for disease treatment. Despite that the understanding on photobiomodulation has been improved by mRNA level evaluation, laser irradiation parameters and procedures are diversified among studies, harming the comparison of RT-qPCR data. In this systematic review, data from mRNA levels reported in photobiomodulation studies were summarized regarding the process, function, and gene. Literature search was conducted for the assessment of published reports on mRNA levels evaluated by RT-qPCR in cells and biological tissues exposed to low-power lasers. Data showed that mRNA levels have been evaluated by RT-qPCR for a variety of genes related to molecular, cellular, and systemic processes after low-power violet-orange, red, and infrared laser exposure. Results from gene expression have increased the understanding of the mechanisms involved in photobiomodulation, and they can be useful to increase the efficacy and safety of clinical applications based on low-power lasers.


Assuntos
Terapia com Luz de Baixa Intensidade , Lasers , Luz , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Mol Biol Rep ; 48(11): 7527-7535, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34637098

RESUMO

Colorectal cancer (CRC) is ranked third most incident and second most deadly around the world, and even though treatments significantly developed over the years, overall survival remains low. This scenario has the contribution of cancer stem cells (CSC), a subpopulation of the heterogeneous tumor bulk, considered to be responsible for the tumor maintenance, conventional therapies resistance, metastasis, and recurrence. In this regard, hypoxia appears as an important component of tumor microenvironment and CSC niche, being associated with a worse prognosis. Therefore, it is vital the study of hypoxia influence on CSC phenotype in CRC. The aim of this mini-review article is to present a brief overview on this field. Recent articles discoursed about CSC molecular regulation, signalling pathways, methods for the study of the topic, as well as molecules and drugs capacity of inhibiting the interplay of hypoxia-CSC. Finally, the studies demonstrated important results, extensively accessing the topics of cellular and molecular regulation and therapeutic intervention, being morphology an area to be more explored.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Microambiente Tumoral , Hipóxia Celular , Neoplasias Colorretais/patologia , Humanos , Células-Tronco Neoplásicas/patologia
14.
Genet Test Mol Biomarkers ; 25(10): 674-682, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34672771

RESUMO

Background: Mutations in the fibroblast growth factor receptor 3 (FGFR3) gene are related to skeletal dysplasias (SDs): acondroplasia (ACH), hypochodroplasia (HCH) and type I (TDI) and II (TDII) tanatophoric dysplasias. This study was designed to standardize and implement a high-resolution melting (HRM) technique to identify mutations in patients with these phenotypes. Methods: Initially, FGFR3 gene segments from 84 patients were PCR amplified and subjected to Sanger sequencing. Samples from 29 patients positive for mutations were analyzed by HRM. Results: Twelve of the patients FGFR3 mutations had ACH (six g.16081 G > A, three g.16081 G > C and three g.16081 G > A + g.16002 C > T); thirteen of patients with HCH had FGFR3 mutations (eight g.17333 C > A, five g.17333 C > G and five were negative); and four patients with DTI had FGFR3 mutations (three g.13526 C > T and one g.16051G > T and two patients with DTII (presented mutation g.17852 A > G). When analyzing the four SDs altogether, an overlap of the dissociation curves was observed, making genotyping difficult. When analyzed separately, however, the HRM analysis method proved to be efficient for discriminating among the mutations for each SD type, except for those patients carrying additional polymorphism concomitant to the recurrent mutation. Conclusion: We conclude that for recurrent mutations in the FGFR3 gene, that the HRM technique can be used as a faster, reliable and less expensive genotyping routine for the diagnosis of these pathologies than Sanger sequencing.


Assuntos
Acondroplasia/diagnóstico , Osso e Ossos/anormalidades , Análise Mutacional de DNA/métodos , Nanismo/diagnóstico , Deformidades Congênitas dos Membros/diagnóstico , Lordose/diagnóstico , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Acondroplasia/genética , Adolescente , Criança , Pré-Escolar , Nanismo/genética , Feminino , Humanos , Lactente , Recém-Nascido , Deformidades Congênitas dos Membros/genética , Lordose/genética , Masculino , Mutação
15.
Photodiagnosis Photodyn Ther ; 35: 102430, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34233224

RESUMO

Acinetobacter baumannii (A. baumannii) has emerged as a pathogen of global importance able to cause opportunistic infections on the skin, urinary tract, lungs, and bloodstream, being frequently involved in hospital outbreaks. Such bacterium can resist a variety of environmental conditions and develop resistance to different classes of antibiotics. Antimicrobial photodynamic therapy (aPDT) has been considered a promising approach to overcome bacterial resistance once it does not cause selective environmental pressure on bacteria. In this review, studies on aPDT were accessed on PubMed, and their findings were summarized regarding its efficacy against A. baumannii. The data obtained from the literature show that exogenous photosensitizers belonging to different chemical classes are effective against multidrug-resistant A. baumannii strains. However, most of such data is from in vitro studies, and additional studies are necessary to evaluate if the exogenous photosensitizers may induce selective pressure on A. baumannii and the effectiveness of such photosensitizers in clinical practice.


Assuntos
Acinetobacter baumannii , Anti-Infecciosos , Fotoquimioterapia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia
16.
Photochem Photobiol Sci ; 20(5): 653-661, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34009632

RESUMO

Acute lung injury and acute respiratory distress syndrome can occur as a result of sepsis. Cardiac dysfunction is a serious component of multi-organ failure caused by severe sepsis. Telomere shortening is related to several heart diseases. Telomeres are associated with the shelterin protein complex, which contributes to the maintenance of telomere length. Low-power infrared lasers modulate mRNA levels of shelterin complex genes. This study aimed to evaluate effects of a low-power infrared laser on mRNA relative levels of genes involved in telomere stabilization and telomere length in heart tissue of an experimental model of acute lung injury caused by sepsis. Animals were divided into six groups, treated with intraperitoneal saline solution, saline solution and exposed to a low-power infrared laser at 10 J cm-2 and 20 J cm-2, lipopolysaccharide (LPS), and LPS and, after 4 h, exposed to a low-power infrared laser at 10 J cm-2 and 20 J cm-2. The laser exposure was performed only once. Analysis of mRNA relative levels and telomere length by RT-qPCR was performed. Telomere shortening and reduction in mRNA relative levels of TRF1 mRNA in heart tissues of LPS-induced ALI animals were observed. In addition, laser exposure increased the telomere length at 10 J cm-2 and modulated the TRF1 mRNA relative levels of at 20 J cm-2 in healthy animals. Although the telomeres were shortened and mRNA levels of TRF1 gene were increased in nontreated controls, the low-power infrared laser irradiation increased the telomere length at 10 J cm-2 in cardiac tissue of animals affected by LPS-induced acute lung injury, which suggests that telomere maintenance is a part of the photobiomodulation effect induced by infrared radiation.


Assuntos
Lesão Pulmonar Aguda/genética , Coração , Lasers , Sepse/genética , Telômero/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Lipopolissacarídeos , RNA Mensageiro/genética , Sepse/induzido quimicamente , Sepse/patologia
17.
J Cancer Res Clin Oncol ; 147(5): 1287-1297, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33580421

RESUMO

PURPOSE: In the complex tumor scenario, understanding the function of proteins with protumor or antitumor roles is essential to support advances in the cancer clinical area. Among them, the salvador family WW domain-containing protein 1 (SAV1) is highlighted. This protein plays a fundamental role in the tumor suppressor face of the Hippo pathway, which are responsible for controlling cell proliferation, organ size, development and tissue homeostasis. However, the functional dysregulation of this pathway may contribute to tumorigenesis and tumor progression. As SAV1 is a tumor suppressor scaffold protein, we explored the functions performed by SAV1 with its partners, the regulation of its expression, and its antitumor role in various types of cancer. METHODS: We selected and analyzed 80 original articles and reviews from Pubmed that focuses on the study of SAV1 in cancer. RESULTS: SAV1 interacts with several proteins, has different functions and acts as tumor suppressor by other mechanisms besides Hippo pathway. SAV1 expression regulation seems to occur by microRNAs and rarely by mutation or promoter methylation. It is downregulated in different types of cancer, which leads to cancer promotion and progression and is associated with poor prognosis. In vivo models have shown that the loss of SAV1 contributes to tumorigenesis. CONCLUSION: SAV1 plays a relevant role as tumor suppressor in several types of cancer, highlighting SAV1 and the Hippo pathway's importance to cancer. Thus, encouraging further studies to include the SAV1 as a molecular key piece in cancer biology and in clinical approaches to cancer.


Assuntos
Proteínas de Ciclo Celular/genética , Neoplasias/genética , Proteínas Supressoras de Tumor/genética , Domínios WW/genética , Animais , Carcinogênese/genética , Proliferação de Células/genética , Humanos , MicroRNAs/genética , Transdução de Sinais/genética
18.
Mol Biol Rep ; 48(2): 1161-1169, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33547534

RESUMO

Hypoxia is associated with tumor aggressiveness and poor prognosis, including breast cancer. Low oxygen levels induces global genomic hypomethylation and hypermethylation of specific loci in tumor cells. DNA methylation is a reversible epigenetic modification, usually associated with gene silencing, contributing to carcinogenesis and tumor progression. Since the effects of DNA methyltransferase inhibitor are context-dependent and as there is little data comparing their molecular effects in normoxic and hypoxic microenvironments in breast cancer, this study aimed to understand the gene expression profiles and molecular effects in response to treatment with DNA methyltransferase inhibitor in normoxia and hypoxia, using the breast cancer model. For this, a cDNA microarray was used to analyze the changes in the transcriptome upon treatment with DNA methyltransferase inhibitor (5-Aza-2'-deoxycytidine: 5-Aza-2'-dC), in normoxia and hypoxia. Furthermore, immunocytochemistry was performed to investigate the effect of 5-Aza-2'-dC on NF-κB/p65 inflammation regulator subcellular localization and expression, in normoxia and hypoxia conditions. We observed that proinflammatory pathways were upregulated by treatment with 5-Aza-2'-dC, in both conditions. However, treatment with 5-Aza-2'-dC in normoxia showed a greater amount of overexpressed proinflammatory pathways than 5-Aza-2'-dC in hypoxia. In this sense, we observed that the NF-κB expression increased only upon 5-Aza-2'-dC in normoxia. Moreover, nuclear staining for NF-κB and NF-κB target genes upregulation, IL1A and IL1B, were also observed after 5-Aza-2'-dC in normoxia. Our results suggest that 5-Aza-2'-dC induces a greater inflammatory change, at the molecular levels, in normoxic than hypoxic tumor microenvironment. These data may support further studies and expand the understanding of the DNA methyltransferase inhibitor effects in different tumor contexts.


Assuntos
Metilação de DNA/efeitos dos fármacos , Metilases de Modificação do DNA/genética , Decitabina/farmacologia , Inflamação/genética , Acetilação/efeitos dos fármacos , Linhagem Celular Tumoral , Metilases de Modificação do DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Epigênese Genética/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Fator de Transcrição RelA/genética , Hipóxia Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
19.
Lasers Med Sci ; 36(9): 1791-1805, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33486614

RESUMO

Clinical protocols based on low-power lasers have been widely used for inflammation process resolution improvement, pain relief, wound healing, and nerve regeneration. However, there are concerns if exposure to such lasers could have negative effects on infected organs and tissues. There are experimental data suggesting exposure to radiations emitted by low-power lasers either induces stimulation, inhibition, or it is effectless on bacterial cultures. Thus, this review aimed to carry out a review of studies and to propose a hypothesis to explain why exposure to low-power lasers could stimulate, inhibit, or have no effect on bacteria. A literature search was carried out for assessment of published reports on effect of low-power lasers on bacteria. The experimental data suggest that keys for determining laser-induced effects on bacteria are specific physical laser and biological parameters. Final consequence on bacterial cells could depend on exposure to low-power laser which could either cause more stimulation of endogenous photoacceptors, more excitation of endogenous photosensitizers, or a balance between such effects.


Assuntos
Bactérias , Lasers , Cicatrização
20.
Lasers Med Sci ; 36(6): 1139-1150, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33387079

RESUMO

Radiations emitted by low power radiation sources have been applied for therapeutic proposals due to their capacity of inactivating bacteria and cancer cells in photodynamic therapy and stimulating tissue cells in photobiomodulation. Exposure to these radiations could increase cell proliferation in bacterial cultures under stressful conditions. Cells in infected or not infected tissue injuries are also under stressful conditions and photobiomodulation-induced regenerative effect on tissue injuries could be related to effects on stressed cells. The understanding of the effects on cells under stressful conditions could render therapies based on photobiomodulation more efficient as well as expand them. Thus, the objective of this review was to update the studies reporting photobiomodulation on prokaryotic and eukaryotic cells under stress conditions. Exposure to radiations emitted by low power radiation sources could induce adaptive responses enabling cells to survive in stressful conditions, such as those experienced by bacteria in their host and by eukaryotic cells in injured tissues. Adaptive responses could be the basis for clinical photobiomodulation applications, either considering their contraindication for treatment of infected injuries or indication for treatment of injuries, inflammatory process resolution, or tissue regeneration.


Assuntos
Bactérias/citologia , Bactérias/efeitos da radiação , Células Eucarióticas/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Estresse Fisiológico/efeitos da radiação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...